科学仪器是科学创新的重要基础和条件。科学发现不仅需要理论创新,还需要借助科学仪器进行实验观察和检验。只有掌握先进的实验技术和技术,才能掌握科学发现的主动权。科学仪器也是人才培养的重要平台。科学仪器的研发往往是技术密集型和复杂的管理创新活动,需要不同学科的交叉融合。是培养具有科研、工程和管理能力的复合型人才的重要基地。百年的科学发展史和众多的诺贝尔奖证明,科学进步离不开科学仪器的技术进步和发展。

中国科学院(简称“中国科学院”),作为自然科学最高学术机构、科学技术最高咨询机构、自然科学与高新技术综合研发中心,其前沿科学研究和技术创新依赖于科学仪器设备的发展。自主研发科学仪器已成为中科院实施“第一行动”计划的重要任务之一。中国科学院也是科学仪器发展和突破的重要推动力量。承担的国家科学仪器研发项目先后完成了前期试验并取得重要进展。本文将概述国内外科学仪器的研发情况和中科院仪器研发的最新进展,展望中科院下一阶段的仪器研发工作。科学。

1 国内外科学仪器研发概况

科学仪器设备作为一个产业,已经形成了从创新思路到关键技术开发的完整体系,以提高我国科学仪器设备的性能。科研机构与企业的良性循环,全球科研人员使用的高端仪器设备基本被少数美国公司垄断。与美国19世纪开始的科学仪器设备的研究和生产相比,我国科学仪器的发展还有很大的差距。起步晚、基础薄弱是主要原因之一。近年来,随着我国经济社会发展对技术自主创新的需求逐步增强,基础科学研究投入不断加大,科学仪器自主创新的重要性日益凸显。国家相关指导性文件陆续出台,明确提出“重视科学仪器设备在科学研究中的作用,加强科学仪器和测量技术的自主研发”。这些新政策充分体现了国家对科学仪器自主研发的重视。

1.1 美国科学仪器研发

国外科学仪器的发展可以追溯到文艺复兴时期,当时科学家们善于使用科学仪器,同时也是先进科学仪器的发明者。科学仪器和科学研究有着显着的伴随关系。例如,牛顿、开普勒等人的许多科学思想都经过特殊的科学仪器验证。与此同时,光谱仪、光学显微镜、气压计等科学仪器也成为科学家们重要的科学产出。

进入20世纪中国科技发展前沿与仪器保障,科技和工业的飞速发展,促使科学研究分工显着。一批高水平的科研人员独立成立了专门制造科学仪器的公司,如卡尔蔡司、岛津源三等。这种分工对于科学仪器的发展有很大的推动作用:除了科学仪器公司可以从事科学仪器的生产,科学仪器公司也更容易建立一种与科学仪器互动的交流形式。以科学家身份从事生产和科研工作作为公司创始人;科研引导 科技发展、科技进步支撑科技创新,科技、科研机构和企业产生良性循环,极大地促进了科学仪器行业的技术进步和创新。

中国科技发展前沿与仪器保障_中国科技发展前沿与仪器保障_化学发展前沿

进入21世纪以来,美国、法国、德国、英国、美国等主要科学仪器制造国都准备了专项计划(资金)来发展“重大科学仪器”。提供持续的资金支持,建立良好的组织模式,不断建立管理方法,确保科学仪器的健康可持续发展。例如,美国国家科学基金会(NSF)在 2005 年发布的《NSF 2020 愿景》中规划了未来 15 年的发展战略,其中将包括先进的仪器、设备、网络基础设施和尖端的实验能力。该设施项目被确定为三个战略重点之一; NSF以“人才、理念、工具、管理”为四大战略目标,形成三大捐助蓝筹股。其中,代表科学仪器的“工具”确立了“提供广泛可用、世界领先水平、共享的研究和教育工具”的总体目标。

1.2 国内科学仪器研发

在我国早期,科学仪器被简单地视为技术发展的“支撑条件”。加之市场经济的冲击、国外仪器的大量涌入和国有体制的禁锢,我国科学仪器行业经历了改革开放初期的低潮期,我国科学仪器行业没有进行分类作为符合国际惯例的“高新技术产业”。国家实施的“863”计划和“973”计划,其中科学仪器研究仅作为本研究计划的辅助工作,分散在各个项目中。同时,高层次科学仪器创新人才培养体系处于建设中期,科学仪器研发普遍面临资金不足、研发和生产加工能力弱、缺乏创新能力等问题。培养高级技术人员。

近年来,随着国家对科技自主创新的需求,《国家中长期科技发展规划纲要(2006-2020年)》和《国家重大科技基础设施建设中长期期计划(2011-2030年)”等指导性文件相继出台,明确提出“重视科学仪器设备在科学研究中的作用,加强科学仪器和计量自主研发”。技术。”我国逐步加大对科学仪器设备自主研发的支持力度。

2006年,财政部组织开展了国家重大科研装备研制试点,支持自主创新仪器、设备或装置的研发,包括:(1)具有国际领先水平并能促进基础研究和应用基础研究的发展,显着改进实验方法,促进学科发展,开拓研究领域;(2)满足解决国家重大共性关键技术的战略需求;( 3)应用新原理、新技术,具有原创性和集成创新特点,获得自主知识产权,具有推广应用前景,可提高国内相关产业或产业的技术水平,产生显着的经济效益.

国家自然科学基金委员会(以下简称“自然科学基金”)很早就将国家自然科学基金的部分专项资金用于捐赠科学仪器基础研究。 2011年,国家基金委设立了国家科研仪器研发重大专项,面向科学前沿和国家需求,以科学目标为导向,鼓励和培育探索性科研仪器的研发。新颖的思想,为科学研究提供新的方法。和先进的工具,促进科技资源共享,全面提升我国科学研究的原创性和创新能力。主要包括:(1)面向科学前沿和国家需求,推动科学发展,探索在研究领域具有重要作用的原创科研仪器;(2)通过关键核心技术突破或集成创新,用于发现新现象,研发揭示新规律、验证新原理、获取新数据的科研仪器。

2011年,科技部启动重大科学仪器设备研制专项; 2016年调整为国家重点研发计划重大科学仪器装备研制重点专项,专门用于支持重大科学仪器装备研制,提高自主创新能力和自主创新能力。我国科学仪器设备的武器水平。该重点专项指出,以市场为导向、以应用为导向、以产业化为导向,重点支持具有市场推广前景的重大科学仪器设备研制。主要包括:(1)基于新原理、新技术、新技术的重大科学仪器设备开发;(2)基于现有重大科学仪器(装置)创新的工程开发;(3)开发)重要的通用科学仪器(包括核心基础部件)。

中国科技发展前沿与仪器保障_化学发展前沿_中国科技发展前沿与仪器保障

早在中科院成立之初,就非常注重科学仪器设备的研发,并专门筹建沉阳科学仪器厂、北京科学仪器等加工制造中心工厂。 “八五”以来,中科院牵头筹建科学仪器研发改造专项。截至目前,已支持仪器研发项目800余项,项目经费约20亿元。 2002年,中国科学院印发了《中国科学院科学仪器设备建设“十五”规划》,其中《中国科学院科学仪器设备专项规划》包括“精选支持”、“共建共享”和“创新研发”三个部分。 2010年,在科学仪器共享共享管理的基础上,增加了仪器设备功能开发项目。通过对现有仪器设备的功能开发和技术改进,扩大了仪器设备的使用范围,提高了仪器设备的性能指标。当前,为落实“四个第一”目标要求,进一步增强中科院科学仪器设备自主创新能力,促进原创性科技创新成果产出,引领自主研发创新我国科学仪器设备研制、中科院科学仪器设备研发 项目以研究所免费申请和自上而下相结合的形式继续推进中科院部署,积极争取国家重大项目支持。

2 中国科学院科学仪器研发进展

经过多年科学仪器研发的积累,中科院多个研究所已经在科学仪器方面培养了优秀的研发团队,形成了得天独厚的优势。 2006年,中国科学院以面向国家前瞻性科研和战略性重大需求为目标,在财政部支持下,试点国家重大科研武器研发项目,领导组织8个具有良好科研基础和仪器开发条件的团队。研制了先进的深紫外全固态激光源装备、再现超强波速飞行条件的脉冲风洞等具有显着自主创新特点和重大研发工作的研究武器,取得了重大科研成果。和创新成果。 2011年,科技部、国家自然科学基金重大科学仪器研发项目1000万元以上。中科院主动部署。在研究所仪器研发项目的研发基础上,筛选出一批项目并推荐给科技部和国家基金委。项目批准后实施。随着公司承担的国家重大科学仪器研发项目的连续初检,相关成果逐渐显现,主要表现在以下三个方面。

2.1 大力支持前沿科学研究

中国科学院大连化学物理研究所在国家自然科学基金重大科研仪器研制项目的支持下,成功构建了基于新一代极紫外的综合实验装置2017年初高增益自由电子激光器(大连相干光源),是世界上唯一运行在极紫外区的自由电子激光器用户设备。极紫外区光源是探测原子分子及其壳层电子结构最重要的光子能量区。在能源、化学、物理、环境、光刻技术等领域具有重要的应用前景。它是一种独特的研究工具。有望形成世界领先的研究成果。相干光源团队的科学家们在中性水团簇的振动光谱和水分子的极紫外光解动力学方面取得了重要进展。目前,他们正在与国内外许多领域的科学家进行广泛的研究合作。迈向一流的基础科学研究中心。

由中国科学院生物物理研究所承担的国家重点科研仪器研发项目国家资助委员会承担的“光电融合超微分生物显微成像系统”于2016年通过初检。该系统首次实现了三维冷冻单分子定位超微分成像和高温透射电镜融合成像、薄片光学超微分成像和扫描电镜融合成像,可系统地用于研究细胞内生物分子机器的分布、原位结构动态变化对生命科学前沿领域的发展具有重要意义。目前,该系统的应用首次实现了荧光标记哺乳动物细胞线粒体外膜蛋白与冷冻保存、三维荧光成像和线粒体膜结构电镜图像的纳米精密融合成像;该系统的应用解释了“一个电流门控”钾离子通道需要几个电流体验单元这个重要的生物学问题。

中国科学院紫金山天文台承担的国家重大科研仪器研发项目“太赫兹超导阵列成像系统”于2017年通过初检。该项目研制了350μm波段32×32像素超导阵列成像系统。该系统的探测灵敏度达到了地基观测设备的本底极限,实现了我国太赫兹超导探测器阵列芯片技术的“零”突破,综合性能处于国际同类探测器系统前列;并将作为我国南极天文台5米太赫兹望远镜DATE5的下一代主要观测设备。这些新的观测仪器使探测高红移富含尘埃的恒星和大尺度亚毫米波连续巡天成为可能,这可能会给早期宇宙、星系的产生和恒星形成的初始条件等研究领域带来前所未有的突破。一代。

由中国科学院物理研究所牵头的财政部国家重大科研武器研发项目“综合极端条件实验系统”于2012年完成。系统是极端高温、强磁场、超高压、超高激光、超快激光等极端实验条件,围绕这个核心集成了一系列适合极端条件下工作的外围实验支撑和检测系统。主要用于进行量子输运、量子自旋电子学、固态量子估计、极端相对论化学、高能量密度化学、超快化学和物理过程等量子理论和相对论的前沿研究,以及用于发现量子异常霍尔效应等重要研究成果做出了贡献。相关应用实验结果由FDM Haldane教授在2016年诺贝尔物理学奖演讲中介绍为拓扑量子物质领域最重要的实验成果之一。 .

中科院物理所牵头的财政部国家重大科研武器研发项目“超高分宽能光电子实验系统”通过初检并投入使用2015年,该系统是建立在上海光源同步辐射装置上的超高能码率、超宽能带光束线实验系统和光电子能谱-光电子显微镜双实验站。是上海光源的“亮点”实验线。车站。它具有独特的设计理念和多项国际领先的设备指标,是目前世界上性能指标最高的光电实验系统之一。该系统投入运行以来,在实验否定固体材料中特有的费米子、研究超大磁阻材料LaSb的电子结构、借助光电子显微镜辅助石墨烯快速生长等方面取得了多项成果,并实现石墨烯能带结构的准一维周期电位调节。重大突破,这些重大成果均发表在国际顶级科学期刊上。该系统的建立,不仅提高了我国借助光电实验设备开展重大科学研究的能力,也为我国尖端科研设备的协同研发积累了经验。

中国科学院国家天文台在财政部国家重大科研武器研发项目的支持下,于2016年完成了明干图射电频谱日光仪(MUSER)。三螺旋阵列中的 100 个天线单元,最大基线宽度为 3 公里。它可以在 584 个频道上使用合成孔径成像方法对整个日球层进行快速光谱成像。在时间、空间和频率分辨率上观察太阳的能力。 MUSER的成功研发,弥补了高地区射电成像观测在太阳爆发能量初期释放方面的科学空白,为研究太阳剧烈活动打开了新的窗口,最大限度地发挥了开展科学研究的需要与太阳能化学有关。促进太阳化学和空间天气的发展。

2.2 满足国家重大任务需求

中科院力学所承担的财政部国家重大科研武器研发项目“冲击风洞再现超强波速飞行条件”于2012年通过初检。成果鉴定委员会认为:“成功研制出世界上第一个具有可再现飞行条件的超大型超大波速风洞,实现了风洞实验状态从‘模拟’到‘再现’的跨越,克服了长期60年等待发展。打破世界困境代表了国际高超波速风洞技术的领先水平。”循环风洞为世界首创。它对21世纪航空航天技术的发展具有开创性的影响。已成功应用于国家重大科研项目、航天 部门多次承担重大专项试验任务,在突破专项关键技术、航天发展、空气动力学规律认可等方面发挥了不可替代的作用,在推动航天航空航天领域形成了重大社会效益。发展我国精湛的波速技术,防范试飞风险。

在财政部、科技部专项仪器研制项目的支持下,中科院理化所研制了系列深紫外全固态激光器源(DUV-DPL)和具有自主知识产权的尖端武器,充分利用我国独创的深紫外技术,打造了深紫外“晶体-光源-设备-科研-产业化”自主创新链,促进了我国小型科学仪器的发展,使我国在该领域的研究处于国际领先地位。目前,深紫外全固态激光相关技术严禁出口。这些深紫外尖端武器为物理、材料科学、化学等学科的研究提供了一种全新的探索方式。新材料物理性质(高温超导体、拓扑绝缘体、石墨烯、超宽带隙半导体、新型光刻胶等)、表面化学/化学动态原位反应、C-Cσ键活化、小纳米爆裂系统等前沿取得多项科研成果,抢占深紫外前沿探索主动权,使我国深紫外领域科研水平处于国际领先地位。

大型高温加热系统广泛应用于民航航天、大型科学工程、核磁共振、气体净化分离、激光点火、超导等领域,能源与环境安全(核废料处理、热核聚变)等)、资源与国防安全(战略氦资源、聚能武器用超导磁炮等)、大型科学装置(大电流重离子加速器、中国散裂中子源等)流动氦)大型高温装备急需发展,事关前沿科学、国家安全和高新技术产业发展,是国家战略高技术领域不可替代的核心平台技术。在财政部仪器研发项目的支持下,中科院理化所成功实现了液氢温度和液氦小型高温加热设备的研发/超流氦温度。各项性能指标均达到国际先进水平,逐步突破美国。高温企业常年垄断国际高温市场的局面意义重大。

中国科学院长春光学精密机械与物理研究所、财政部国家重大科研武器研发项目“大型高精度衍射光栅划线系统”于2016年通过初检,并成功开发出面积最大、精度最高的光栅雕刻 借助该机,开发出世界上面积最大的400mm×500mm中阶梯光栅。这一成果的取得,标志着我国光栅制造能力达到国际领先水平,打破了光栅在小型光学系统、遥测等战略高技术领域应用受制于人的局面,将大力支持我国光栅制造能力的发展。 193纳米光刻、高科技 对地观测分辨率等领域重大战略部署的实施中国科技发展前沿与仪器保障,解决了我国光谱仪器“无心”问题,实现了“中国光栅梦” .

中国科学院长春光学精密机械与物理研究所在财政部国家重大科研武器研发项目支持下,成功研制出4m级高精度碳化硅非球面镜集成制造体系,打破美国大口径非球面制造技术垄断,形成具有自主知识产权的4m大口径反射镜研发能力;已成功申请多项国家重大示范工程和背景核高基工程,牵头国家重大示范工程7项,总经费超过50亿元。项目成果将继续应用于空间站多功能光学设施(未来国家空间站的标志性成果)、国家重点研发计划等一系列国家重大基础研究和工程项目。 ——“地球静止轨道高分辨率重载成像单反系统技术”等,对我国国防安全、基础科学研究、防灾减灾、公共安全、应急响应等具有重要战略意义字段。

中国科学院西安光学精密机械研究所在财政部国家重大科研武器研发项目的支持下,建成了国外唯一的一体化设计的白光单反研发基地,生产和测试,并成功开发了8种白色单反。 , Has made a series of breakthroughs in key technologies such as electronic optical system design, high-performance photocathode manufacturing, ultra-fast ramp pulse forming circuit, and electronic pulse time air conditioning system. It has obtained dozens of national invention patents and has completely independent intellectual property rights. The white SLR developed by the project has long been used in three major projects in my country, such as the laser fusion research of the Chinese Academy of Engineering Physics, the superb chassis combustion diagnosis of the National University of Defense Technology from qualitative to quantitative conversion research, and a major project of Harbin Institute of Technology and a laser three-dimensional Surveying and mapping system research. The successful research and development of the stripe SLR broke the US blockade, and made my country's relevant high-tech technology research no longer constrained by others. It has provided core technical guarantees for the country's major scientific engineering, basic frontiers, and national defense security.

The Ministry of Finance's National Major Scientific Research Weapon Research and Development Project "Development of Deep Resource Detection Core Weapons" led by the Institute of Geology and Geophysics of the Chinese Academy of Sciences passed the preliminary inspection in 2017. According to the technical requirements of the three levels of target area selection, mining area exploration, and detailed ore body inspection in the exploration process of mineral resources, the project is required for satellite magnetic load measurement, aerospace superconducting full tensor magnetic gradient measurement device, and aviation Transient electromagnetic driller, prospecting gravimeter, multi-channel high-power electrical prospecting instrument, metal mine flood detection system, deep copper mineral exploration system, combined submarine flood detection weapon 8 sets of deep resource detection weapons held research and development It has broken through core technologies such as deep detection weapon sensing, and initially produced a three-dimensional detection weapon system for space, ground, ocean, and well drilling, which supports the detection of 4 000 m deep resources in my country, and provides a national strategy for "advancing to the depths of the moon". A strong technical support.

2.3 Promote the industrialization of high-end instruments

Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, supported by the Ministry of Science and Technology National Major Scientific Instrument and Equipment Development Project "Engineering Development of 500 MHz Superconducting Nuclear Magnetic Resonance Spectrometer", has solved more than 600 software and hardware reliability problems, and core technology Has completely independent intellectual property rights; established Wuhan Zhongke Bopu Technology Co., Ltd. The company has cooperated with the internationally renowned supplier of magnetic poles in Japan to produce superconducting magnets; and established a probe research center in the United States to realize the localization of a complete set of superconducting nuclear magnetic resonance spectrometer technologies and products; the produced spectrometers have been sold to All parts of the country have replaced imported equipment in many application fields such as physics, biology, materials science, etc., saving the country tens of millions of dollars in foreign exchange expenses each year. Currently, 38 users have installed them in place. Through industrial technology cooperation, the project has taken an important step in the implementation of my country's small-scale scientific instrument localization strategy, and promoted the rapid development of population health and medical equipment industry, which has important social value and economic benefits.

Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, with the support of the Ministry of Science and Technology’s national major scientific instrument and equipment development project "Development of Femtosecond Laser Equipment for Research on the Improvement of New Civil Aviation Chassis Performance", took the lead in developing two generations of three types of serialization abroad (Four-axis/five-axis/seven-axis) ultra-fast laser extreme manufacturing weapons, and has achieved major demonstration applications in civil aviation, aerospace, automotive and other fields. Relying on the mature "Xiguang Model" to promote the transformation of scientific and technological achievements, in 2015, it successively incubated Xi'an Zhongke Microfine Photonics Manufacturing Technology Co., Ltd. and Shenzhen Zhongke Photonics Technology Co., Ltd. to establish high-end processing services, customized product services, The business model of coordinated development of multiple product portfolios with standardized product sales and achievement transfer provides the electronic industry with 6 fingerprint module cutting intelligent production lines, sales of more than 40 sets of equipment, and more than 80,000 pieces of processing on behalf of the company.

中国科技发展前沿与仪器保障_中国科技发展前沿与仪器保障_化学发展前沿

The Institute of High Energy Physics, Chinese Academy of Sciences, with the support of the "Distributed Dynamic Radioactive Detection and Imaging System" project of the Ministry of Science and Technology, is aimed at real-time search and rescue detection of radioactive materials and various types of nuclear waste. A distributed ray inspection system with high-sensitivity radiography function, omnidirectional ray manual positioning function, physical positioning function, data communication function, and networking function has been developed. The system has been successfully applied to safety inspections and nuclear safety inspections for small and important national activities, inspections for important nuclear bases such as my country's uranium enrichment and nuclear fuel reprocessing, detection of radiation hotspots at the operation site of nuclear power plants, and radioactive environmental monitoring and evaluation of large scientific installations. Through cooperation with related companies, we have productized more than 10 series of products in three major categories, covering 3 application directions (numerical values, nuclides, and images) in the field of nuclear detection. Among them, gamma-ray imagers have been used in nuclear power, nuclear fuel, Security and anti-terrorism, environmental monitoring, radioactive decommissioning and many other fields have opened up the market.

The Institute of Automation of the Chinese Academy of Sciences, with the support of the "Photoelectric Synchronous Brain Activity Monitoring Instrument Development" project of the Ministry of Science and Technology, has successfully developed a photoelectric synchronous monitoring system that combines near-infrared spectroscopy technology and EEG acquisition technology. The system is applied to clinical research, such as the study of cognitive function in children with asthma, the study of brain function in people with visual impairment, the study of brain function in patients with impaired consciousness, the neurofeedback treatment of stroke patients, the examination of intracranial bleeding, and the brain activity under neuroregulation Researches such as those have great social benefits in terms of cognition and clinical application of major neuropsychiatric disorders.

Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences completed the National Key Scientific Research Instrument Research and Development Project "Magnetic Resonance Imaging Instruments for the Research of Major Human Brain Diseases", which realized the ventilation, microstructure, and spleen-stomach exchange functions of the human brain Quantitative and visual detection, obtained the first foreign MRI (magnetic resonance imaging) image of the human brain, filling the gap in foreign brain MRI. The developed instrument has been successfully used in clinical brain MRI research. With the higher requirements of social development for medical and scientific imaging equipment, relying on the construction of "Xiamen University of Science and Technology · Zhigu", the project team and the Wuchang District Government reached an industrialization project and joint experiment on accelerating the development of high-end medical imaging equipment The "Six Ones" cooperation contract for the laboratory, science and innovation space, leading companies, academician workstations, and high-end strategic summits is expected to complete the first phase of sales of 50 million yuan of human brain MRI instruments in 2020. The industrialization of the project's instruments has also been further supported by the "Hongguang Special Project" of the Chinese Academy of Sciences. In addition, through the docking with Shanghai United Imaging Company, Wuhan University Zhongnan Hospital and Wuchang District Government, the establishment of the "China United Imaging Medical Imaging Joint Laboratory" has further provided strong support for the industrialization of the project's equipment such as technical upgrades.

Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences undertook the Ministry of Finance's national major scientific research weapon research and development project "Full manual stem cell induction culture equipment research" passed the preliminary inspection in 2018. It has independent intellectual property rights and integrates automated culture and microscopy. Online observation, identification algorithm and manual clone picking functions are integrated, the world's first fully manual, large-scale, standardized induction and expansion of stem cell induction and production system. The equipment can use the hidden Markov model to complete the prediction of the iPSC (induced pluripotent stem cell) induction process and guide the automated selection of iPSC clones; the identified clones can be picked with high precision through a steel syringe that can form a shear force ; Human intervention is reduced, multi-person, low-cost, high-quality, and integrated stem cell production can be realized, with huge social benefits. The successful research and development of equipment will promote the practical application of iPSC in the field of regenerative medicine research, promote my country's independent research and development process in the field of stem cell weapons, promote the rapid development of basic research and clinical application of stem cells in my country, and lay the foundation for the research of stem cell regenerative medicine and precision medicine. .

In 2010, the Institute of Process Engineering, Chinese Academy of Sciences, supported by the Ministry of Finance's major national scientific research weapon research and development project "High-efficiency and low-cost multi-scale discrete simulation super estimation application system", will be released in 2010 to fully demonstrate the EMMS (Minimum Energy Multi-scale) calculation paradigm. The double-precision petaflops supercomputing system Mole-8.5, which was the reddest petaflops system in the world at that time. The system has served the development process of more than 10 Fortune 500 companies, including Sinopec, PetroChina, Baosteel, Shenhua and other leading foreign companies and Mobil, British Petroleum, Total, BASF, General Electric, Alstom, EDF, United Multinational industry predators such as Lihua and BHP Billiton. In the near future, the development of the virtual process engineering platform will enter the practical stage, and the development of the next generation of supercomputing systems based on the EMMS paradigm will also be on the agenda, and its improvement will further promote the development of process engineering and the technology of process industry. progress.

3 结论

The report of the 19th National Congress of the Communist Party of China proposed to "strengthen applied basic research, highlight key common technologies, frontier technologies, modern engineering technologies, and disruptive technological innovations." Scientific instruments are used as tools for applied basic research and carriers of technological innovation. Independent research and development will play a key role in solving the problem of my country's key core technologies being restricted by others, promoting technological progress and innovation in the scientific instrument industry, and promoting economic and social development. After years of development, the scientific instrument research and development work of the Chinese Academy of Sciences has achieved certain results through multiple channels such as the state, academies, and research institutes. However, my country's scientific instrument-related industries have a weak foundation. Only to further strengthen investment, focus on key points, and implement new science and technology policies. System planning and overall linkage such as the New Industry Policy, the New Finance and Taxation Policy, and the New Policy for Talents can reverse the unfavorable situation of imported instruments and equipment occupying the mainstream of the market.

本文链接:http://www.wcyzgj.comhttp://www.wcyzgj.com/kjfz/431.html

上一篇:2021年4月20日辽宁金洋科技发展集团有限公司

下一篇:没有了